Subject Index of Volume 50

Alkaline fuel cells

alkaline falling-film fuel cell. A breakthrough in technology and cost, 311 Alkaline media

influence of inhibitors on corrosion and anodic behaviour of different grades

Allovs

corrosion behaviour of low-antimony lead alloy in sulfuric acid solution,

of aluminium in alkaline media, 321

Alloy separator

surface treatment of alloy separator in a planar-type solid oxide fuel cell, 361

Aluminium

influence of inhibitors on corrosion and anodic behaviour of different grades of aluminium in alkaline media, 321

Aluminium/air batteries

heat management in aluminium/air batteries: sources of heat, 331

Aluminium-carbon cell

studies on an aluminium-carbon cell, 187

Antimony

corrosion behaviour of low-antimony lead alloy in sulfuric acid solution, 47

Batteries

determination of impedance parameters of individual electrodes and internal resistance of batteries by a new nondestructive technique. 2. Theoretical approach, 33

Battery performance

simulation of the discharge curve by short-time discharge based on the power of internal resistance, 97

Carbon

methanol oxidation on carbon-supported platinum-tin electrodes in sulfuric acid, 295

Catalyst

influence of PTFE dispersion in the catalyst layer of porous gas-diffusion

electrodes for phosphoric acid fuel cells, 163

Cathodic protection system

photovoltaic-powered regulated cathodicprotection system, 27

Cobalt

migration of cobalt in nickel oxide/ hydroxide active material of a nickel electrode in a Ni/H₂ cell, 57

Conductivity

conductivity and viscosity studies of dimethyl sulfoxide (DMSO)-based electrolyte solutions at 25 °C, 283

Corrosion

corrosion behaviour of low-antimony lead alloy in sulfuric acid solution, 47

influence of inhibitors on corrosion and anodic behaviour of different grades of aluminium in alkaline media, 321

Current

a new model for the current-voltage output characteristics of photovoltaic modules, 11

Current-potential data

digital simulation of galvanostatic current-potential data for gasdiffusion electrodes and estimation of electrode-kinetic parameters, 177

Dimethyl sulfoxide

conductivity and viscosity studies of dimethyl sulfoxide (DMSO)-based electrolyte solutions at 25 °C, 283

Discharge time

simulation of the discharge curve by short-time discharge based on the power of internal resistance, 97

Dissipation energy

a calculation of the heat dissipation resulting directly from poor thermal conduction inside a solar collector using an energy balance equation, 391

Electrode-kinetic parameters

digital simulation of galvanostatic current-potential data for gas-

diffusion electrodes and estimation of electrode-kinetic parameters, 177

Electrodes

determination of impedance parameters of individual electrodes and internal resistance of batteries by a new non-destructive technique. 2. Theoretical approach, 33

efficiency of lignosulfonates and humicrelated substances as expanders in negative electrodes of the lead/acid system, 131

methanol oxidation on carbon-supported platinum-tin electrodes in sulfuric acid, 295

Electrolyte solutions

conductivity and viscosity studies of dimethyl sulfoxide (DMSO)-based electrolyte solutions at 25 °C, 283

Expanders

efficiency of lignosulfonates and humicrelated substances as expanders in negative electrodes of the lead/acid system, 131

Faradaic efficiency

an approximate model for estimating the faradaic efficiency loss in zinc/ bromine batteries caused by cell self-discharge, 343

Gas-diffusion electrodes

the meniscus cell – partially immersed gas-diffusion electrodes. 2. Modelling, 121

influence of PTFE dispersion in the catalyst layer of porous gas-diffusion electrodes for phosphoric acid fuel cells, 163

digital simulation of galvanostatic current-potential data for gasdiffusion electrodes and estimation of electrode-kinetic parameters, 177

effect of structure on porous gasdiffusion electrodes for phosphoric acid fuel cells, 261

Grids

aspects of lead/acid battery technology. 9. Grids, 193

Heat

heat management in aluminium/air batteries: sources of heat, 331

Humes

efficiency of lignosulfonates and humicrelated substances as expanders in negative electrodes of the lead/acid system, 131

Hydrogen-electrode reactions

effect of gelling on the electrode kinetics of the Pb/PbSO₄ and hydrogen-electrode reactions in maintenance-free lead/acid batteries, 67

Hydrolysis

impedance of nickel/cadmium cells with nylon separator hydrolysate, 375

Impedance parameters

determination of impedance parameters of individual electrodes and internal resistance of batteries by a new nondestructive technique. 2. Theoretical approach, 33

Inhibition

influence of inhibitors on corrosion and anodic behaviour of different grades of aluminium in alkaline media, 321

Internal resistance

determination of impedance parameters of individual electrodes and internal resistance of batteries by a new nondestructive technique. 2. Theoretical approach, 33

simulation of the discharge curve by short-time discharge based on the power of internal resistance, 97

Lead

corrosion behaviour of low-antimony lead alloy in sulfuric acid solution, 47

Lead/acid batteries

effect of gelling on the electrode kinetics of the Pb/PbSO₄ and hydrogen-electrode reactions in maintenance-free lead/acid batteries, 67

efficiency of lignosulfonates and humicrelated substances as expanders in negative electrodes of the lead/acid system, 131

investigations of the factors causing performance losses of lead/acid traction batteries, 153

aspects of lead/acid battery technology. 9. Grids, 193

Lead/acid cells

investigations of the negative plate of lead/acid cells. 3. Model calculations of the impedance of self-similar porous electrodes, 89

Lead-tin alloys

an in situ study of the effect of tin on the passivation of lead-tin alloys, 141

Lignosulfonates

efficiency of lignosulfonates and humicrelated substances as expanders in negative electrodes of the lead/acid system, 131

Lithium batteries

rechargeable lithium batteries with a polymeric single-ion conductor, 369

Maintenance-free batteries

effect of gelling on the electrode kinetics of the Pb/PbSO₄ and hydrogen-electrode reactions in maintenance-free lead/acid batteries, 67

Meniscus cell

the meniscus cell. 1. Experimental, 109
the meniscus cell — partially immersed
gas-diffusion electrodes. 2. Modelling,
121

Methanol oxidation

methanol oxidation on carbon-supported platinum-tin electrodes in sulfuric acid, 295

Negative plate

investigations of the negative plate of lead/acid cells. 3. Model calculations of the impedance of self-similar porous electrodes, 89

Nickel/cadmium cells

studies on the storage of electrochemically impregnated nickel/cadmium cells, 81

impedance of nickel/cadmium cells with nylon separator hydrolysate, 375

Nickel/hydrogen cells

migration of cobalt in nickel oxide/ hydroxide active material of a nickel electrode in a Ni/H₂ cell, 57 effects of charged open-stand in nickel/

hydrogen cells, 383

Nickel electrodes

polypropylene fibre material as a carrier for nickel electrodes, 21

Nylon separator

impedance of nickel/cadmium cells with nylon separator hydrolysate, 375

Passivation

an in situ study of the effect of tin on the passivation of lead-tin alloys, 141

Performance losses

investigations of the factors causing performance losses of lead/acid traction batteries, 153

Phosphoric acid fuel cells

influence of PTFE dispersion in the catalyst layer of porous gas-diffusion electrodes for phosphoric acid fuel cells, 163

effect of structure on porous gasdiffusion electrodes for phosphoric acid fuel cells, 261

Photovoltaic cells

a new model for the current-voltage output characteristics of photovoltaic modules, 11

photovoltaic-powered regulated cathodicprotection system, 27

Photovoltaic system

optimum design of a photovoltaic powered pumping system, 1

Platinum

methanol oxidation on carbon-supported platinum-tin electrodes in sulfuric acid, 295

Polymeric conductor

rechargeable lithium batteries with a polymeric single-ion conductor, 369

Polypropylene fibres

polypropylene fibre material as a carrier for nickel electrodes, 21

PTFE

influence of PTFE dispersion in the catalyst layer of porous gas-diffusion electrodes for phosphoric acid fuel cells, 163

Rechargeable

rechargeable lithium batteries with a polymeric single-ion conductor, 369

Self-discharge

an approximate model for estimating the faradaic efficiency loss in zinc/ bromine batteries caused by cell self-discharge, 343

Solar refrigeration

a calculation of the heat dissipation resulting directly from poor thermal conduction inside a solar collector using an energy balance equation, 391

Solid adsorbant

a calculation of the heat dissipation resulting directly from poor thermal

conduction inside a solar collector using an energy balance equation, 391

Solid oxide fuel cells

surface treatment of alloy separator in a planar-type solid oxide fuel cell, 361

Storage

studies on the storage of electrochemically impregnated nickel/cadmium cells, 81

Surface treatment

surface treatment of alloy separator in a planar-type solid oxide fuel cell, 361

Thermal conduction

a calculation of the heat dissipation resulting directly from poor thermal conduction inside a solar collector using an energy balance equation, 391

Tin

an in situ study of the effect of tin on the passivation of lead-tin alloys, 141 methanol oxidation on carbon-supported platinum-tin electrodes in sulfuric acid, 295

Viscosity

conductivity and viscosity studies of dimethyl sulfoxide (DMSO)-based electrolyte solutions at 25 °C, 283

Voltage

a new model for the current-voltage output characteristics of photovoltaic modules. 11

Water-pumping system
optimum design of a photovoltaic
powered pumping system, 1

Zinc/bromine batteries

an approximate model for estimating the faradaic efficiency loss in zinc/ bromine batteries caused by cell self-discharge, 343